Measuring the Higgs boson self-coupling at high energy e^+e^- colliders

UB, PRD 80, 013012 (2009)

- 1. Introduction
- 2. ZHH production
- 3. $\nu \bar{\nu} HH$ production
- 4. Sensitivity limits
- 5. Conclusions

Ulrich Baur
State University of New York at Buffalo

1 – Introduction

- If it exists, the Standard Model (SM) Higgs boson will be discovered at the LHC
- The LHC promises complete coverage of Higgs decay scenarios
- Quantitatively at the LHC: measure
 - $\sim M_H$ to 0.1%
 - Γ_H to $\leq 10\%$
 - $\sigma \times Br \text{ to } 10\%$

what remains to be done: determine Higgs potential

$$V(\eta_H) = \frac{1}{2} m_H^2 \eta_H^2 + \lambda v \eta_H^3 + \frac{1}{4} \tilde{\lambda} \eta_H^4,$$

 η_H : physical Higgs field, $v = (\sqrt{2}G_F)^{-1/2}$,

SM:
$$\tilde{\lambda} = \lambda = \lambda_{SM} = m_H^2/(2v^2)$$

- $rightharpoonup \lambda$ and $\tilde{\lambda}$ are *per se* free parameters
- to measure λ ($\tilde{\lambda}$), experiments must observe HH (HHH) production
 - rightharpoonup HHH cross sections too small to probe $\tilde{\lambda}$ at any machine considered so far
 - rightharpoonup concentrate on λ in the following
- radiative corrections to *HHH* coupling:
 - Arr SM: -4% -11% for $120 \text{ GeV} < M_H < 200 \text{ GeV}$ (Yuan *et al.*)
 - can be up to 100% in general 2HDM
 - MSSM: up to 8% for light stop squarks (Hollik et al.)

- The measurement of the Higgs self-coupling, λ , is one of the benchmarks which is used to gauge the performance of the ILC
- Past investigations have focused on a very light Higgs boson ($m_H = 120 \text{ GeV}$) with $\sqrt{s} = 500 \text{ GeV}$
- and the background was estimated using shower Monte Carlos
- Here, I present calculations using MadEvent
 - for $m_H = 120$ GeV, $m_H = 140$ GeV and $m_H = 180$ GeV (disfavored in recent GFITTER fits)
 - $\sqrt{s} = 500$ GeV, 1 TeV and 3 TeV
 - $rightharpoonup ext{for } e^+e^- o ZHH o jj4b ext{ and } e^+e^- o \nu\bar{\nu}HH$
 - with the backgrounds, including the non-resonant diagrams, calculated using exact matrix elements (whereever possible)

2 – ZHH Production

• I focus on $ZHH \rightarrow jj4b$ and require that the jj system is compatible with a Z boson, and the 4b's form two pairs which are compatible in invariant mass with a Higgs boson:

$$|M_Z - m(jj)| < 8~{
m GeV}$$

$$100~(120)~{
m GeV} < m(b\bar{b}) < 126~(150)~{
m GeV}$$
 for $m_H=120~(140)~{
m GeV}.$

- require 4 tagged b-quarks
- include minimal detector effects by Gaussian smearing (ILC detector expectations):

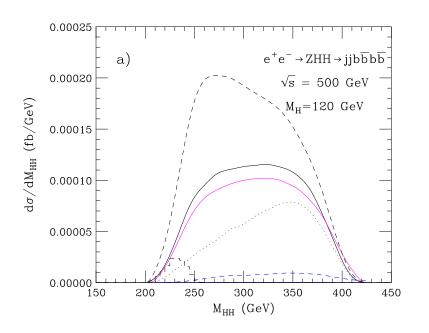
$$\frac{\Delta E}{E}$$
(had) = $\frac{0.405}{\sqrt{E}}$, $\frac{\Delta E}{E}$ (lep) = $\frac{0.102}{\sqrt{E}}$,

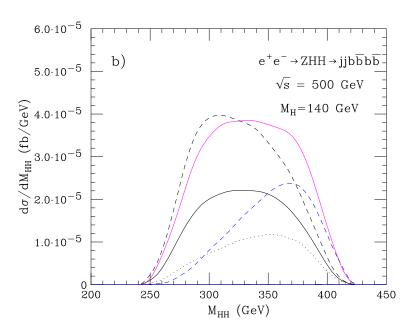
• cuts:

$$E_{j(b)} > 15 \text{ GeV}, \qquad 5^{\circ} < \theta(j(b), \text{beam}) < 175^{\circ}$$

 $\theta(j(b), j'(b')) > 10^{\circ} \qquad \theta(j, b) > 10^{\circ}$

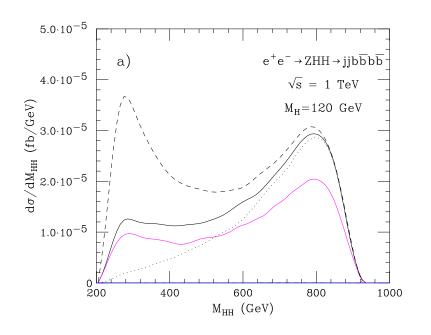
- assume a *b*-tagging efficiency of $\epsilon_b = 0.9$, and charm and light quark/gluon jet misidentification probabilities of $P_{c \to b} = 10\%$, $P_{i \to b} = 0.5\%$
- also investigate $\epsilon_b = 0.8$ and $P_{c \to b} = 2\%$, $P_{j \to b} = 0.1\%$
- take energy loss of b-quarks into account via a parametrized function
- m_{HH} distribution is sensitive to λ

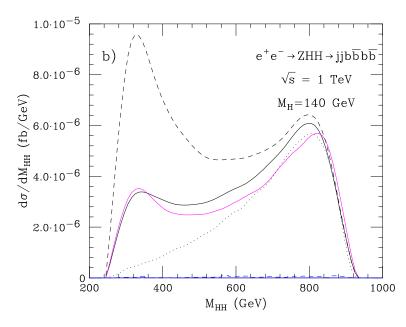

- main backgrounds:
 - onn-resonant diagrams ($\approx 8500~\mathcal{O}(\alpha^6),~\mathcal{O}(\alpha_s^4\alpha^2)$ and $\mathcal{O}(\alpha_s^2\alpha^4)$ diagrams)
 - $= jjb\bar{b}c\bar{c}~(b\bar{b}4j)$ production with two mis-identified charm (light quark/gluon) jets (7300 [15600] diagrams)
 - assume b-jet charge can be measured with 100% efficiency (expectation for ILC: $\approx 90\%$)
- results: solid black: SM signal,


magenta: SM resonant and non-resonant diagrams

dash (dots): $\Delta \lambda_{HHH} = (\lambda/\lambda_{SM} - 1) = +1 (-1)$

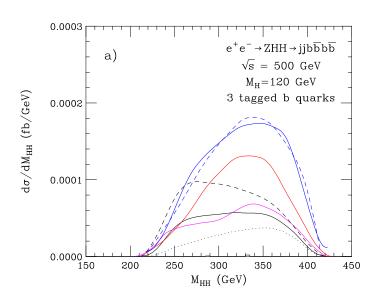
dashed blue: $jjb\bar{b}c\bar{c}$ background

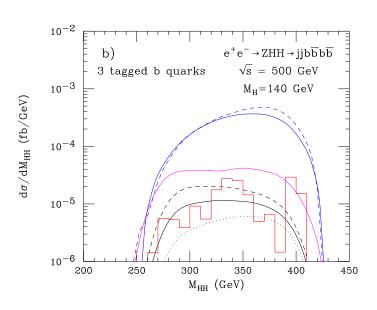

$$\sqrt{s} = 500 \text{ GeV}$$



- The $jjb\bar{b}c\bar{c}$ and non-resonant backgrounds for $m_H=140$ GeV are much larger than for $m_H=120$ GeV
- The cross section for $m_H = 140$ GeV is tiny $(Br(H \to b\bar{b}) \approx 30\%)$
- black dashed histogram: combinatorial background from pairing the wrong b and \bar{b}

$$\sqrt{s} = 1 \text{ TeV}$$

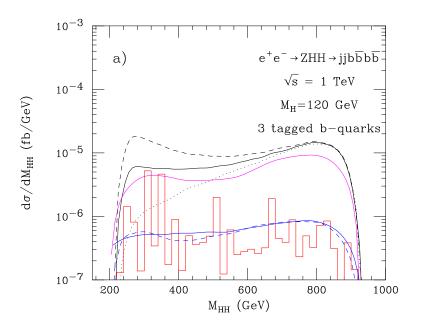


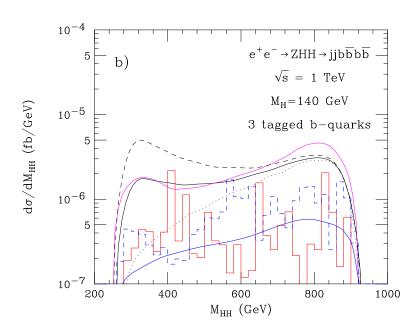

- The background for $m_H=140~{\rm GeV}$ is significantly smaller for $\sqrt{s}=1~{\rm TeV}$
- The $b\bar{b}4j$ background is negligible at both $\sqrt{s}=500$ GeV and 1 TeV

- The $e^+e^- \to ZHH \to jj4b$ rate is very small
- The signal rate can be increased by requiring ≥ 3 tagged b-quarks instead of 4 b-tags

gain: factor ≈ 1.4

$$\sqrt{s} = 500 \text{ GeV}$$


• require a jj pair consistent with Z, a $b\bar{b}$ pair, and a bj pair consistent with a Higgs


• lines:

```
solid (dashed) blue: b\bar{b}cjjj (b\bar{b}c\bar{c}jj) red: b\bar{b}4j all others have the same meaning as before
```

- Unfortunately, at $\sqrt{s}=500$ GeV, the gain is more than compensated by the increase in the $b\bar{b}4j$ and $jjb\bar{b}c\bar{c}$ background.
- In addition, $b\bar{b}cjjj$ production contributes to the background
- Note: the background cross section is $\propto \alpha_s^4$ and thus carries a substantial renormalization scale uncertainty
 - → either need NLO QCD corrections calculated for backgrounds (good luck with that!) or have to measure backgrounds

$$\sqrt{s} = 1 \text{ TeV}$$

• background much more favorable at $\sqrt{s}=1$ TeV; however, it is still non-negligible

3 – $\nu \bar{\nu} HH$ **Production**

- Consider $\nu \bar{\nu} H H \rightarrow \nu \bar{\nu} 4b$ for $m_H = 120$ GeV and $m_H = 140$ GeV first
- Require that the four b's form two pairs which are compatible with a Higgs boson

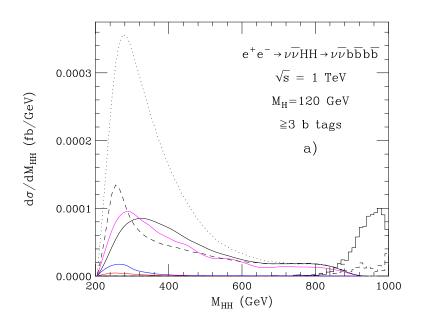
$$100 (120) \text{ GeV} < m(b\bar{b}) < 126 (150) \text{ GeV}$$

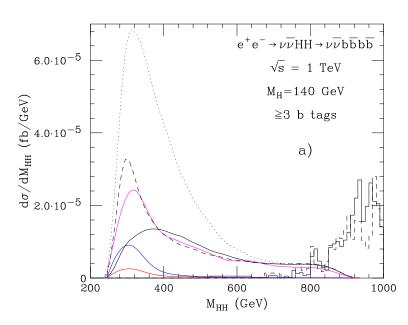
for
$$m_H = 120 (140)$$
 GeV.

- require ≥ 3 tagged b-quarks
- include $ZHH \rightarrow \nu_l \bar{\nu}_l 4b$ with $l = \mu, \tau$

- use same basic cuts and resolutions as before
- In addition, we require

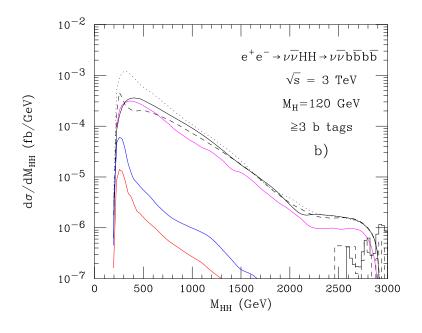
$$p_T > 15 \text{ GeV}$$

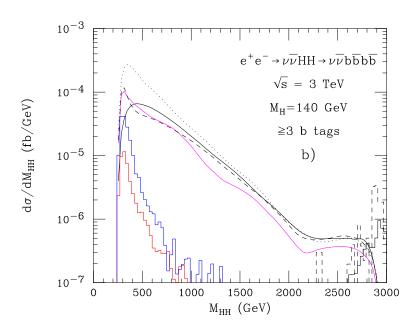

- main backgrounds:
 - riangleq non-resonant diagrams ($\approx 2300~\mathcal{O}(\alpha^6)$, and $\mathcal{O}(\alpha_s^2\alpha^4)$ diagrams)
 - $\sim \nu \bar{\nu} b \bar{b} c \bar{c} (\nu \bar{\nu} b \bar{b} j j)$ production with two mis-identified charm (light quark/gluon) jets (900 [2100] diagrams)
- other backgrounds: 4b and $b\bar{b}jj$ production with the missing transverse momentum originating from jet mismeasurements and the energy loss of b-quarks


require $p_T > 15 \text{ GeV}$

• Furthermore: $e^+e^- \rightarrow e^+e^-b\bar{b}b\bar{b}$ where both electrons are missed (not calculated yet)

• results: solid black: SM signal, magenta: SM resonant and non-resonant diagrams dash (dots): $\Delta \lambda_{HHH} = (\lambda/\lambda_{SM} - 1) = +1 (-1)$ blue: $\nu \bar{\nu} b \bar{b} c \bar{c}$ background red: $\nu \bar{\nu} b \bar{b} j j$ background solid (dashed) histogram: $4b \ (b \bar{b} j j)$ background


$$\sqrt{s} = 1 \text{ TeV}$$



- The $\nu \bar{\nu} b \bar{b} c \bar{c}$ and $\nu \bar{\nu} b \bar{b} j j$ backgrounds are small
- The 4b and $b\bar{b}jj$ backgrounds pose no threat to the measurement of λ
- non-resonant contributions can easily be mistaken for a positive anomalous Higgs self-coupling

$$\sqrt{s} = 3 \text{ TeV}$$

- For $m_H=140$ GeV: $B(H\to WW^*\to 4f)\approx 50\%, B(WW^*\to 4j)\approx 46\%$
 - \rightarrow one can significantly increase the signal cross section by taking into account the $\nu \bar{\nu} b \bar{b} 4j$ final state
- Also take into account $H \to ZZ^* \to 4j$ $(B(H \to ZZ^*) \approx 10\%$ for $m_H = 140$ GeV)
- require

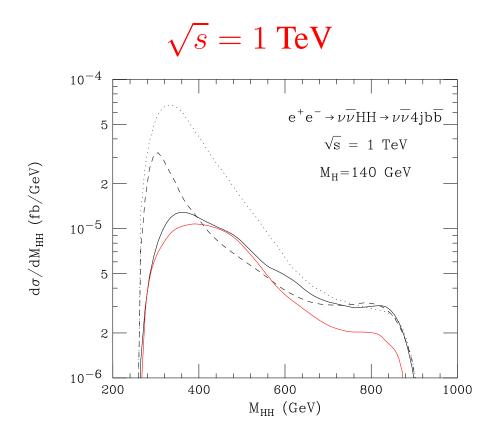
$$|m_H - m(4j)| < 20 \text{ GeV}$$

and one un-tagged jet pair with

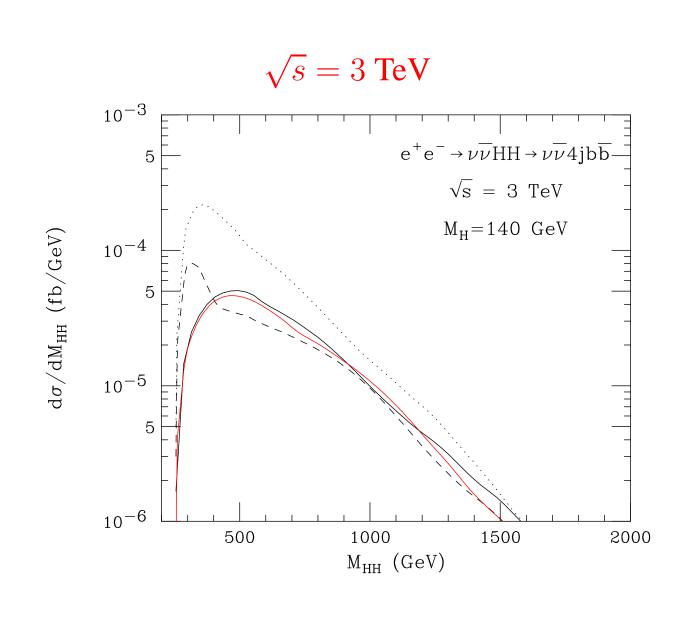
$$|m_W - m(jj)| < 8 \text{ GeV}$$

• main backgrounds: non-resonant $\nu \bar{\nu} b \bar{b} 4j$, $\nu \bar{\nu} 4c$ and $\nu \bar{\nu} b \bar{b} c \bar{c} j j$ production

- problem: these are $2 \rightarrow 8$ processes with $> 10^5$ Feynman diagrams
 - too many diagrams for MadEvent (takes more than 200h CPU time (3ghz Xeon) to generate diagrams
 - WHIZARD could not compile code (compilation terminated after > 48h)
 - HELAC-PHEGAS bombed with a glibc error
 - SHERPA can't handle it in its current version (V1.1), but, according to Frank Krauss will be able to so in V1.2
 - CARLOMAT should be able to handle it, but is not publically available (author never replied to my email request)


- A substantial portion of the contribution of the non-resonant $\nu \bar{\nu} b \bar{b} 4j$ diagrams should come from the off-shell $W^* \to jj$ pair.
 - → most of the non-resonant effects can be captured by calculating

$$e^+e^- \to \nu\bar{\nu}Wjjb\bar{b}$$
 with $W \to jj$


or

$$e^+e^- \to \nu\bar{\nu}H4j$$
 with $H \to b\bar{b}$

- Calculate $e^+e^- \to \nu \bar{\nu} W j j b \bar{b}$, $W \to j j$ here (about 7000 Feynman diagrams)
- Expect $\nu \bar{\nu} b \bar{b} c \bar{c} j j$ and $\nu \bar{\nu} 4c$ backgrounds to be small (as in $\nu \bar{\nu} b \bar{b} c \bar{c}$ case)
- The $b\bar{b}4j$ background (with p_T from jet mis-measurement and energy loss of the b-quarks) is very small

- Non-resonant diagrams substantially reduce the cross section at large values of m_{HH}
- The non-resonant diagrams not included in $\nu \bar{\nu} W j j b \bar{b}$ jet production may well affect the cross section to a similar degree

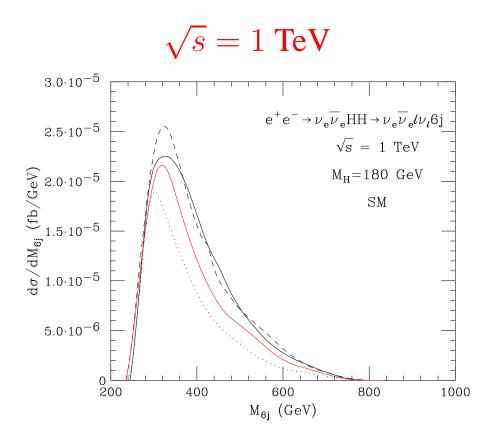
$$m_H = 180 \text{ GeV}$$

- For $m_H = 180$ GeV, $B(H \rightarrow WW) \approx 93\%$
- Final states with the largest branching ratios are $HH \to 4W \to \ell^{\pm}\nu_{\ell}6j$ ($\ell=e,\mu$) ($Br\approx 24\%$) and $HH \to 4W \to 8j$ ($Br\approx 19\%$) \to concentrate on those final states
- $e^+e^- \rightarrow \ell^{\pm} p_T 6j$: require standard cuts and, in addition, 3 or more jet pairs consistend with a W, with two of the pairs

$$160 \text{ GeV} < m([jj][jj]) < 200 \text{ GeV}$$

- main backgrounds: non-resonant diagrams and W6j production (about 21,000 Feynan diagrams)
- use 6*j* invariant mass distribution to search for anomalous Higgs self-couplings

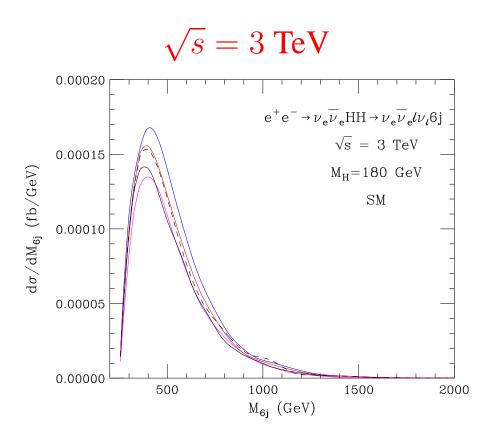
- A full calculation of the $2 \to 10$ process $e^+e^- \to \ell^{\pm} p_T 6j$ is currently not feasible
- to get an idea of how important the non-resonant diagrams are, I calculate $e^+e^- \to \nu\bar{\nu}\ell\nu_\ell jjH$ with $H \to WW \to 4j$ (1,300 Feynman diagrams) and $e^+e^- \to \nu\bar{\nu}4jH$ with $H \to WW \to \ell\nu_\ell jj$ (20,000 Feynman diagrams)
- results for $e^+e^- \rightarrow \nu_e \bar{\nu}_e HH \rightarrow \nu_e \bar{\nu}_e \ell^{\pm} \nu_{\ell} 6j$:


black line: SM signal

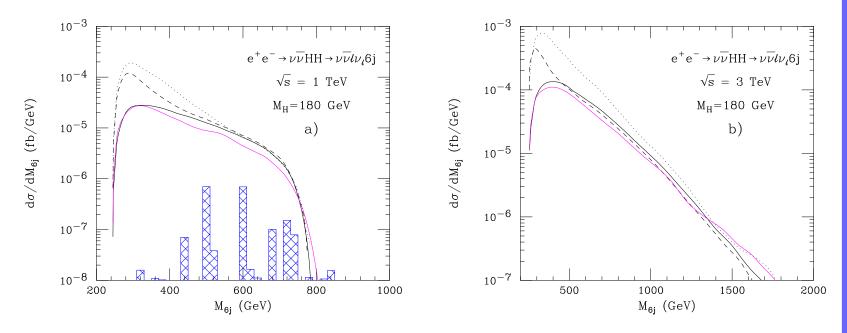
dashed black line: $\nu_e \bar{\nu}_e \ell^{\pm} \nu_\ell j j H, H \to WW \to 4j$

dotted curve: $\nu_e \bar{\nu}_e 4jH$, $H \to WW \to \ell^{\pm} \nu_{\ell} jj$

red line: average of $\nu_e \bar{\nu}_e 4jH$, $H \to WW \to \ell^{\pm} \nu_{\ell} jj$ and $\nu_e \bar{\nu}_e \ell^{\pm} \nu_{\ell} jjH$,


 $H \rightarrow WW \rightarrow 4j$

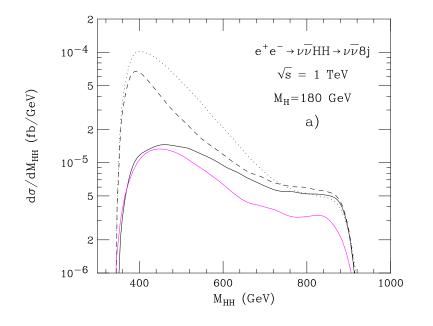
• The nonresonant diagrams in $e^+e^- \rightarrow \nu\bar{\nu}\ell\nu_\ell jjH$ with $H\rightarrow WW\rightarrow 4j$ significantly enhance the cross section near threshold.

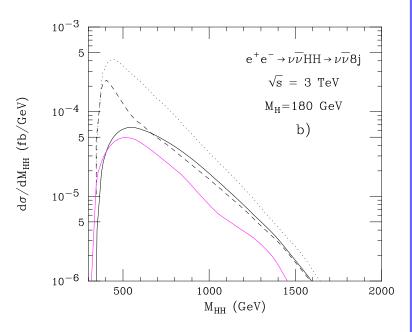

This is expected since the $\ell\nu_\ell$ invariant mass cannot be constrained (3 ν 's in the final state)

- The non-resonant diagrams in $\nu_e \bar{\nu}_e 4jH$, $H \to WW \to \ell^{\pm} \nu_{\ell} jj$ production reduce the cross section by a factor 1.5-2
- The averaging procedure used here ignores a very large number of Feynman diagrams which still may have a significant impact on the cross section
- Justification: compare SM $e^+e^- \rightarrow \nu_e \bar{\nu}_e \ell^{\pm} \nu_\ell jjH$, $H \rightarrow WW \rightarrow 4j$ cross section (black dashed line) with averaging (red line) the $e^+e^- \rightarrow \nu_e \bar{\nu}_e \ell^{\pm} \nu_\ell WH$, $W \rightarrow jj$, $H \rightarrow WW \rightarrow 4j$ (blue line) and the $e^+e^- \rightarrow \nu_e \bar{\nu}_e WjjH$, $W \rightarrow \ell \nu_\ell$, $H \rightarrow WW \rightarrow 4j$ cross section (black solid line)

- red and black dashed lines agree with a few precent
- The magenta line shows the $\nu_e \bar{\nu}_e HH$, $HH \to 4W \to \ell \nu_\ell 6j$ SM signal cross section

Adopting the averaging procedure introduced above


The W6j background is very small


$$HH \rightarrow 8j$$

- Require 4 jet pairs consistent with W's
- The jet pairs are required to form two groups of 4j systems which satisfy

$$160 \text{ GeV} < m([jj][jj]) < 200 \text{ GeV}$$

- Main background: non-resonant diagrams
- Estimate by calculating $e^+e^- \rightarrow \nu\bar{\nu}4jH$ with $H \rightarrow WW \rightarrow 4j$ and the previously used averaging procedure
- black solid line: SM signal dashed and dotted lines: $\Delta \lambda_{HHH} = (\lambda/\lambda_{SM} 1) = \pm 1$ magenta: including non-resonant diagrams

- non-resonant diagrams have a big effect
- there is no guarantee that the approximation used here is a good approximation

4 – Sensitivity limits

- Perform a log-likelihood test
- Assume a 10% systematical uncertainty on cross section (probably optimistic)
- assume $\int \mathcal{L}dt = 1$ ab⁻¹ (corresponds to 5 years of running at ILC design luminosity)
- no (marignal) gain from including final states with only 3 tagged b-quarks for $\sqrt{s} = 500$ GeV (1 TeV)
 - \rightarrow considering a working point with a somewhat reduced b-tagging efficiency, but a much reduced light/charm misidentification probabilty may help
- for $m_H=140$ GeV and $\nu\bar{\nu}HH$ production, the $HH\to bbWW^*$ final states are included in the analysis

- for $m_H=180$ GeV, both the $\nu\bar{\nu}8j$ and $\nu\bar{\nu}\ell\nu_\ell 6j$ final states are taken into account
- 68% CL limits:

 $\sim \nu \bar{\nu} H H$:

$$\sqrt{s} = 1 \text{ TeV}, m_H = 120 \text{ GeV}: -0.21 < \Delta \lambda_{HHH} < 0.30$$

 $\sqrt{s} = 1 \text{ TeV}, m_H = 140 \text{ GeV}: -0.38 < \Delta \lambda_{HHH} < 0.94$
 $\sqrt{s} = 1 \text{ TeV}, m_H = 180 \text{ GeV}: -0.29 < \Delta \lambda_{HHH} < 0.55$
 $\sqrt{s} = 3 \text{ TeV}, m_H = 120 \text{ GeV}: -0.12 < \Delta \lambda_{HHH} < 0.14$
 $\sqrt{s} = 3 \text{ TeV}, m_H = 140 \text{ GeV}: -0.19 < \Delta \lambda_{HHH} < 0.15$
 $\sqrt{s} = 3 \text{ TeV}, m_H = 180 \text{ GeV}: -0.20 < \Delta \lambda_{HHH} < 0.16$

Random Remarks

- The values reported for $m_H = 120$ GeV, $\sqrt{s} = 500$ GeV agree quite well this those of a fast simulation by SiD (Tim Barklow)
- A full simulation, however, gives limits which are about a factor 2 worse (SiD, private communication)
- Iimits from $\nu \bar{\nu} HH$ production are significantly more stringent at $\sqrt{s}=1$ TeV than those from ZHH production
 - At a 500 GeV e^+e^- machine, one can measure the Higgs boson self-coupling only if the Higgs mass is close to the current lower experimental limit
- At CLIC ($\sqrt{s} = 3$ TeV), limits can be improved by up to a factor of 1.5 if 3 ab⁻¹ (5 years of running at design luminosity) can be achieved
- Whether the cuts used are adequate for CLIC remains to be seen

Measuring the Higgs selfcoupling at a Muon Collider

- All results presented here apply *mutatis mutandis* for a muon collider with the same center of mass energy and integrated luminosity
- The cross section for the direct channel $\mu^+\mu^- \to HH$ is several orders of magnitude smaller than that for ZHH and $\nu\bar{\nu}HH$ production

5 – Conclusions

- Non-resonant diagrams can significantly affect the total and differential cross sections for $e^+e^- \rightarrow jj4b$
- At a 500 GeV e^+e^- machine, one can measure the Higgs boson self-coupling only if the Higgs mass is close to the current lower experimental limit
- Non-resonant diagrams in $\nu\bar{\nu}4b$ production can mimic the effects of non-standard Higgs self-couplings
- At a 1 TeV machine, with 1 ab⁻¹, $\nu \bar{\nu} HH$ production gives more precise limits than $e^+e^- \rightarrow ZHH$.
- For CLIC ($\sqrt{s} = 3$ TeV, 3 ab⁻¹) can measure the Higgs self-coupling with a precision of 10 20%.